3D-Printed "Cancer-on-a-Chip" **Model for Studying Angiogenesis**

Ghazaleh Madani, Omid Nejati, Zhina Mazhari CanChip GmbH

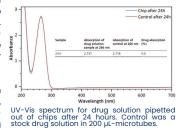
Introduction

Tumor angiogenesis is central to CRC progression and metastasis, conventional 2D models cannot replicate the spatial and physiological complexity of the tumor microenvironment. This limits insights into cell-cell interactions and vascularization.

To overcome these gaps, we developed a 3D-printed "CRC-on-a-chip" system co-culturing HCT116 cells with HUVECs to mimic angiogenic interactions. This platform offers a more realistic model for studying CRC angiogenesis and provides a reliable foundation for drug testing and molecular research.

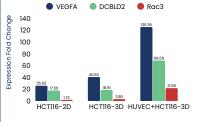
Workflow Chip construction via 3D Printing Chip Incubation in modified incubator Treating the cells with therapeutic HCT-116 Cells 3D Chip design agents using SolidWorks Cell Seeding and Co-Culture on the Chip

Chip Design – 40 mm – Chip Size: 40mm x 40mm x 2.5mm


Flow cytometry Analysis Positive Negative CD133 - APC-A CD133 - APC

Flow cytometry of HCT-116 cells stained with APC-CD133 on the Attune cytometer shows single-cell gating for CD133-positive (green) and CD133-negative (red) populations. The plots display percentage distributions and overlay histograms comparing fluorescence intensities between positive and negative groups.

Drug Absorption Test

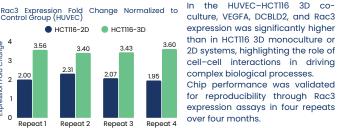

Testing drug absorption on 3D-printed microfluidic devices is key to evaluating material-drug interactions. Assessing how 5-Fluorouracil (5FU) behaves helps determine device compatibility and efficiency delivery, testing, and screening.

The lack of significant absorption indicates minimal interaction with 5FU, suggesting the devices are materialneutral and suitable for drug screening applications.

Gene Expression Analysis

Comparison of Gene Expression Level Across Different Sample Types (Expression fold changes have been resulted as data normalization to HUVEC, as control group)

HCT116-3D


2.07

Genes used for qPCR

Rac3 - Promotes gene expression linked to cancer stemness and CRC progression.

DCBLD2 - Drives tumor growth, metastasis, and 5-FU resistance through EMT and angiogenesis. **VEGFA** - Key regulator of angiogenesis; stimulates

endothelial proliferation, migration, and vessel permeability.

Repeat 2 Repeat 3

■ HCT116-2D

2

Experimental Results

Gene expression analysis and flow cytometry have revealed the role of the Rac3 gene in CRC angiogenesis. Quantitative PCR data showed a 2.54-fold increase in Rac3 expression in HCT116 cells compared to HUVEC controls. Further experiments with spheroids demonstrated a 1.36-fold increase in Rac3 expression compared to monolayer cultures, highlighting the importance of 3D tumor structures in modulating gene activity.

195

Conclusion

The 'CRC-on-a-chip' model presents a transformative leap in colorectal cancer research, offering an ethical, cost-effective, and scalable alternative to animal testing. By accurately mimicking the tumor microenvironment, this platform provides new insights into CRC biology, angiogenesis, and drug response, paving the way for innovative treatments and therapies.